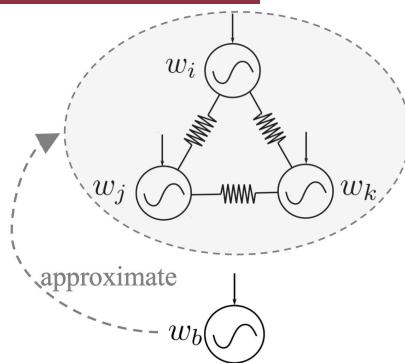


Motivation

Observations: different nodes exhibit similar response to disturbance (“**Coherency**”)

similar frequency responses



Challenges:

In realistic power networks:

- Heterogeneous & nonlinear dynamics
- Persistent time-varying disturbances

Model & Method

Heterogeneous nodal dynamics (driven by physical laws)

$$M_i \dot{w}_i = -f_i(w_i) + \xi_i - \sum_j B_{ij} \sin(\theta_i - \theta_j)$$

power flow

frequency nonlinear damping disturbance angle

We use $\hat{w}(t) \in \mathbb{R}$ to approximate $\{w_i(t)\}_{i \in \mathcal{N}}$

Blended dynamics (by our construction)

$$\left(\sum_i M_i \right) \dot{\hat{w}} = \sum_i \left(-f_i(\hat{w}) + \xi_i \right)$$

Results

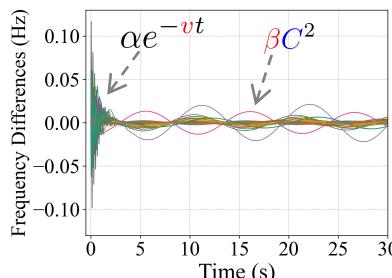


Fig: Evolution of $\hat{w}(t) - w_i(t)$

Assumption:

$\frac{df_i(w_i)}{dw_i}$ is strictly positive and upper bounded

Theorem: (Bounds on approximation error)

$$\max_i |\hat{w}(t) - w_i(t)|^2 \leq \alpha e^{-vt} + \beta C^2$$

(holds locally under nonlinear power flow)

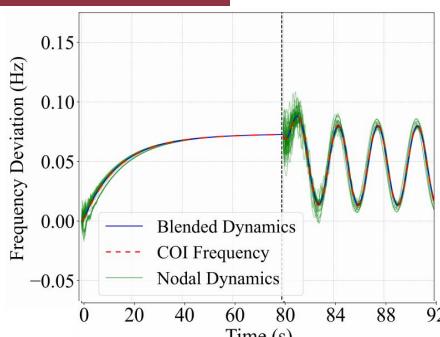
Interpretations:

network with **high** algebraic connectivity

large v
small β

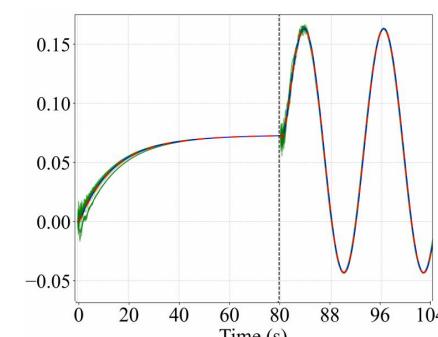
$w_i(t)$ approaches $\hat{w}(t)$ exponentially fast

disturbances with **small** time-variation rate

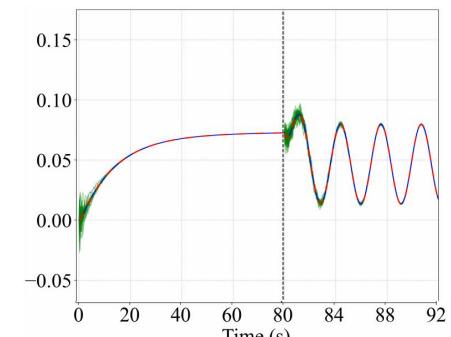

small C

$w_i(t)$ follows $\hat{w}(t)$ closely in long term

Blended


dynamics is an effective approximation

Experiments



(on Icelandic power grid)

Case 1:
Base case

Case 2:
Disturbances with larger magnitudes but slower time-variation rates

Case 3:
Network with higher connectivity

Reference

[1] Min, H., Pates, R., & Mallada, E. (2025). A frequency domain analysis of slow coherency in networked systems. *Automatica*, 174, 112184.

[2] Kim, J., Yang, J., Shim, H., Kim, J. S., & Seo, J. H. (2015). Robustness of synchronization of heterogeneous agents by strong coupling and a large number of agents. *IEEE Transactions on Automatic Control*, 61(10), 3096-3102.